Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Journal of Korean Medical Science ; : e131-2023.
Article in English | WPRIM | ID: wpr-976958

ABSTRACT

Background@#Early and appropriate diagnosis of amnestic mild cognitive impairment (aMCI) is clinically important because aMCI is considered the prodromal stage of dementia caused by Alzheimer’s disease (AD). aMCI is assessed using the comprehensive neuropsychological (NP) battery, but it is rater-dependent and does not provide quick results. Thus, we investigated the performance of the computerized cognitive screening test (Inbrain Cognitive Screening Test; Inbrain CST) in the diagnosis of aMCI and compared its performance to that of the Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) test (CERAD-K), a comprehensive and pencil-and-paper NP test. @*Methods@#A total of 166 participants were included in this cross-sectional study. The participants were recruited as part of a prospective, community-based cohort study for MCI (PREcision medicine platform for mild cognitive impairment on multi-omics, imaging, evidence-based R&BD; PREMIER). All participants were assessed using the CERAD-K and the Inbrain CST. The Inbrain CST comprised seven subtests that assessed the following five cognitive domains: attention, language, visuospatial, memory, and executive functions. Seventy-six participants underwent brain magnetic resonance imaging and [ 18 F]-flutemetamol positron emission tomography (PET). We evaluated the diagnostic performance of the Inbrain CST for the identification of aMCI by comparing the findings with those of CERAD-K. We also determined the characteristics of aMCI patients as defined by the CERAD-K and Inbrain CST. @*Results@#Of the 166 participants, 93 were diagnosed with aMCI, while 73 were cognitively unimpaired. The sensitivity of the Inbrain CST for aMCI diagnosis was 81.7%, and its specificity was 84.9%. Positive and negative predictive values were 87.4% and 78.5%, respectively. The diagnostic accuracy was 83.1%, and the error rate was 16.9%. Demographic and clinical characteristics between individuals with aMCI defined by the Inbrain CST and CERAD-K were not significantly different. The frequency of positive amyloid PET scan, the hippocampal/ parahippocampal volumes, and AD signature cortical thickness did not differ between the patients with aMCI defined by CERAD-K and those with aMCI defined by the Inbrain CST. @*Conclusion@#The Inbrain CST showed sufficient sensitivity, specificity, and positive and negative predictive values for diagnosing objective memory impairment in aMCI. In addition, aMCI patients identified by CERAD-K and the Inbrain CST showed comparable clinical and neuroimaging characteristics. Therefore, the Inbrain CST can be considered an alternative test to supplement the limitations of existing pencil-and-paper NP tests.

2.
The Korean Journal of Physiology and Pharmacology ; : 47-57, 2022.
Article in English | WPRIM | ID: wpr-919336

ABSTRACT

Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.

3.
Laboratory Animal Research ; : 337-344, 2022.
Article in English | WPRIM | ID: wpr-968330

ABSTRACT

Background@#Fameyes (a mixture of Clematis mandshurica Rupr. extract (CMRE) and Erigeron annuus (L.) Pers. extract (EAPE)) containing scutellarin and chlorogenic acid as major components has been reported to relieve mental stress in human subjects, which is reflected in improved scores in psychometric tests measuring levels of depression, anxi‑ ety, well-being, and mental fitness. The aim of this study was to examine the anti-stress activity of Fameyes and to investigate the mechanisms of the anti-stress activity using in vitro and in vivo models of stresses. @*Results@#First, we tested the effect of Fameyes on corticosterone-induced cytotoxicity in SH-SY5Y cells (human neurofibroma cell lines). Corticosterone induced apoptosis and decreased cell viability and mitochondrial membrane potential, but treatment with Fameyes inhibited these cytotoxic effects in a dose-dependent manner. However, CMRE and EAPE (components of Fameyes) did not inhibit the cytotoxic effect of corticosterone individually. Next, we tested the effects of Fameyes on rats that were exposed to different kinds of stresses for four weeks. When the stressed rats were treated with Fameyes, their immobility time in forced swim and tail suspension tests decreased. A reduction was also observed in the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone. Furthermore, upon oral administration of Fameyes, serum serotonin levels increased. These in vitro and in vivo results support the anti-stress effects of Fameyes. @*Conclusions@#In vitro experiments showed anti-stress effects of Fameyes in cell viability, apoptosis, and mitochon‑ drial membrane potential. In addition, in vivo experiments using rats showed anti-stress effects of Fameyes in blood and tissue levels of ACTH, corticosterone, and serotonin, as well as the immobility time in the forced swim and tail sus‑ pension tests. However, we did not specifically investigate which ingredient or ingredients showed anti-stress effects, although we reported that Fameyes contained chlorogenic acid and scutellarin major ingredients.

4.
Laboratory Animal Research ; : 185-192, 2021.
Article in English | WPRIM | ID: wpr-902670

ABSTRACT

Background@#Hypothermic treatment is known to protect organs against cardiac arrest (CA) and improves survival rate. However, few studies have evaluated the effects of hypothermia on CA-induced liver damages. This study was designed to analyzed the possible protective effects of hypothermia on the liver after asphyxial CA (ACA). Rats were randomly subjected to 5 min of ACA followed by return of spontaneous circulation (ROSC). Body temperature was controlled at 37 ± 0.5 °C (normothermia group) or 33 ± 0.5 °C (hypothermia group) for 4 h after ROSC. Liver tissues were extracted and examined at 6 h, 12 h, 1 day, and 2 days after ROSC. @*Results@#The expression of infiltrated neutrophil marker CD11b and matrix metallopeptidase-9 (MMP9) was investigated via immunohistochemistry. Morphological damage was assessed via hematoxylin and eosin (H & E) staining. Hypothermic treatment improved the survival rate at 6 h, 12 h, 1 day, and 2 days after ACA. Based on immunohistochemical analysis, the expression of CD11b and MMP9 was significantly increased from 6 h after ACA in the normothermia group. However, the expressions of CD11b and MMP9 was significantly decreased in the hypothermia group compared with that of the normothermia group. In addition, in the results of H & E, sinusoidal dilatation and vacuolization were apparent after ACA; however, these ACA-induced structural changes were reduced by the 4 h-long hypothermia. @*Conclusions@#In conclusion, hypothermic treatment for 4 h inhibited the increases in CD11b and MMP9 expression and reduced the morphological damages in the liver following ACA in rats. This study suggests that hypothermic treatment after ACA reduces liver damages by regulating the expression of CD11b and MMP9.

5.
Laboratory Animal Research ; : 90-97, 2021.
Article in English | WPRIM | ID: wpr-902648

ABSTRACT

Background@#Aging is one of major causes triggering neurophysiological changes in many brain substructures, including the hippocampus, which has a major role in learning and memory. Thioredoxin (Trx) is a class of small redox proteins. Among the Trx family, Trx2 plays an important role in the regulation of mitochondrial membrane potential and is controlled by TrxR2. Hitherto, age-dependent alterations in Trx2 and TrxR2 in aged hippocampi have been poorly investigated. Therefore, the aim of this study was to examine changes in Trx2 and TrxR2 in mouse and rat hippocampi by age and to compare their differences between mice and rats. @*Results@#Trx2 and TrxR2 levels using Western blots in mice were the highest at young age and gradually reduced with time, showing that no significant differences in the levels were found between the two subfields. In rats, however, their expression levels were the lowest at young age and gradually increased with time. Nevertheless, there were no differences in cellular distribution and morphology in their hippocampi when it was observed by cresyl violet staining. In addition, both Trx2 and TrxR2 immunoreactivities in the CA1-3 fields were mainly shown in pyramidal cells (principal cells), showing that their immunoreactivities were altered like changes in their protein levels. @*Conclusions@#Our current findings suggest that Trx2 and TrxR2 expressions in the brain may be different according to brain regions, age and species. Therefore, further studies are needed to examine the reasons of the differences of Trx2 and TrxR2 expressions in the hippocampus between mice and rats.

6.
Laboratory Animal Research ; : 185-192, 2021.
Article in English | WPRIM | ID: wpr-894966

ABSTRACT

Background@#Hypothermic treatment is known to protect organs against cardiac arrest (CA) and improves survival rate. However, few studies have evaluated the effects of hypothermia on CA-induced liver damages. This study was designed to analyzed the possible protective effects of hypothermia on the liver after asphyxial CA (ACA). Rats were randomly subjected to 5 min of ACA followed by return of spontaneous circulation (ROSC). Body temperature was controlled at 37 ± 0.5 °C (normothermia group) or 33 ± 0.5 °C (hypothermia group) for 4 h after ROSC. Liver tissues were extracted and examined at 6 h, 12 h, 1 day, and 2 days after ROSC. @*Results@#The expression of infiltrated neutrophil marker CD11b and matrix metallopeptidase-9 (MMP9) was investigated via immunohistochemistry. Morphological damage was assessed via hematoxylin and eosin (H & E) staining. Hypothermic treatment improved the survival rate at 6 h, 12 h, 1 day, and 2 days after ACA. Based on immunohistochemical analysis, the expression of CD11b and MMP9 was significantly increased from 6 h after ACA in the normothermia group. However, the expressions of CD11b and MMP9 was significantly decreased in the hypothermia group compared with that of the normothermia group. In addition, in the results of H & E, sinusoidal dilatation and vacuolization were apparent after ACA; however, these ACA-induced structural changes were reduced by the 4 h-long hypothermia. @*Conclusions@#In conclusion, hypothermic treatment for 4 h inhibited the increases in CD11b and MMP9 expression and reduced the morphological damages in the liver following ACA in rats. This study suggests that hypothermic treatment after ACA reduces liver damages by regulating the expression of CD11b and MMP9.

7.
Laboratory Animal Research ; : 90-97, 2021.
Article in English | WPRIM | ID: wpr-894944

ABSTRACT

Background@#Aging is one of major causes triggering neurophysiological changes in many brain substructures, including the hippocampus, which has a major role in learning and memory. Thioredoxin (Trx) is a class of small redox proteins. Among the Trx family, Trx2 plays an important role in the regulation of mitochondrial membrane potential and is controlled by TrxR2. Hitherto, age-dependent alterations in Trx2 and TrxR2 in aged hippocampi have been poorly investigated. Therefore, the aim of this study was to examine changes in Trx2 and TrxR2 in mouse and rat hippocampi by age and to compare their differences between mice and rats. @*Results@#Trx2 and TrxR2 levels using Western blots in mice were the highest at young age and gradually reduced with time, showing that no significant differences in the levels were found between the two subfields. In rats, however, their expression levels were the lowest at young age and gradually increased with time. Nevertheless, there were no differences in cellular distribution and morphology in their hippocampi when it was observed by cresyl violet staining. In addition, both Trx2 and TrxR2 immunoreactivities in the CA1-3 fields were mainly shown in pyramidal cells (principal cells), showing that their immunoreactivities were altered like changes in their protein levels. @*Conclusions@#Our current findings suggest that Trx2 and TrxR2 expressions in the brain may be different according to brain regions, age and species. Therefore, further studies are needed to examine the reasons of the differences of Trx2 and TrxR2 expressions in the hippocampus between mice and rats.

8.
Laboratory Animal Research ; : 188-196, 2020.
Article | WPRIM | ID: wpr-836909

ABSTRACT

Brain Factor-7® (BF-7), silk fibroin peptide, is known to be effective in improvement of memory and learning ability. In this study, the effects of BF-7 (10 mg/kg, p.o., pre-treatment for 7 days and post-treatment for 7 days) on neuroprotection and memory and learning functions were investigated in a rat model of transient focal cerebral ischemia and a gerbil model of transient global forebrain ischemia. Furthermore, to find the mechanism of BF-7, we examined the neuroprotective and antioxidative effects of BF-7 in vitro using neuroblastoma (SH-SY5Y) cells. In vivo model, treatment with BF-7 significantly reduced the number of errors in 8-arm maze test and significantly increased latency time in passive avoidance test at 7 days after focal ischemia compared to those in the vehicle-treated group. In addition, treatment with BF-7 significantly decreased the infarct size or neuronal death at 7 day following transient ischemia compared to that in the vehicle-treated group. In vitro model, 10 or 20 μg/ml of BF-7 treatment significantly increased cell viability in dose-dependent manner. In addition, oxidative stress was significantly attenuated in the ischemic cells, showing that 10 or 20 μg/ml of BF-7 treatment significantly reduced the generation of reactive oxygen species (ROS) compared to that in the ischemic cells. These results indicate that BF-7 treatment can attenuate ischemic damages and improve memory deficits via reduction of ROS generation.

9.
Laboratory Animal Research ; : 229-238, 2020.
Article | WPRIM | ID: wpr-836905

ABSTRACT

Obesity has been known as an independent risk factor for stroke. Effects of high-fat diet (HFD)-induced obesity on neuronal damage in the somatosensory cortex of animal models of cerebral ischemia have not been studied yet. In this study, HFD-induced obesity was used to study the impact of obesity on neuronal damage/loss and microgliosis in the somatosensory cortex of a gerbil model of 5-min transient forebrain ischemia. We used gerbils fed normal diet (ND) and HFD and chronologically examined microgliosis (microglial cell activation) by ionized calcium-binding adapter molecule 1 (Iba-1) immunohistochemistry. In addition, we examined neuronal damage or death by using neuronal nuclear protein (NeuN, a neuronal marker) immunohistochemistry and Fluoro-Jade B (F-J B, a marker for neuronal degeneration) histofluorescence staining. We found that ischemia-induced microgliosis in ND-fed gerbils was increased from 2 days post-ischemia; however, ischemia-mediated microgliosis in HFD-fed gerbils increased from 1 day post-ischemia and more accelerated with time than that in the ND-fed gerbils. Ischemia-induced neuronal death/loss in the somatosensory cortex in the ND-fed gerbils was apparently found at 5 days post-ischemia. However, in the HFD-fed gerbils, neuronal death/loss was shown from 2 days post-ischemia and progressively exacerbated at 5 days post-ischemia. Our findings indicate that HFD can evoke earlier microgliosis and more detrimental neuronal death/loss in the somatosensory cortex after transient ischemia than ND evokes.

10.
Journal of Clinical Neurology ; : 285-291, 2020.
Article | WPRIM | ID: wpr-833618

ABSTRACT

Background@#and PurposeWe aimed to determine the patterns and mechanisms of persistent nystagmus (PN) lasting >1 year in lateral medullary infarction (LMI). @*Methods@#We recruited 13 patients with PN due to LMI and another 13 with transient nystagmus (TN) (<1 year) as control. All patients underwent oculography, rotatory chair test, caloric test, bedside head impulse test, dizziness handicap inventory (DHI), and brain MRI. @*Results@#All patients had spontaneous, contralesional, horizontal-torsional nystagmus during the acute phase. Although two patients exhibited consistent contralesional torsional nystagmus, most patients (11/13, 85%) with PN evolved from the initial contralesional to ipsilesional nystagmus. During horizontal gaze, the patterns of ipsilesional PN were diverse; torsional (n=5), torsional-downbeat (n=2), horizontal (n=2), and horizontal nystagmus while looking at the lesion side, and torsional nystagmus while looking at the opposite side (n=2). During rotatory chair test, the gains of the vestibulo-ocular reflex in the PN group were lower than those in the TN group to the lesion side at 0.02 and 0.64 Hz. The caudal and ventrolateral parts of the vestibular nuclei were mostly involved in patients with PN. The DHI score did not differ between the groups. @*Conclusions@#PN patterns frequently change in LMI. Resultant vestibular asymmetry after vestibular afferents or cerebellar inhibitory pathway damage and/or inappropriate vestibular compensation may be responsible for PN in LMI. Impairment of the horizontal or vertical neural integrators may be another cause. The presence of PN does not necessarily indicate more severe dizziness in LMI.

11.
Chinese Medical Journal ; (24): 1919-1924, 2019.
Article in English | WPRIM | ID: wpr-802772

ABSTRACT

Background@#Differential diagnosis of idiopathic Parkinson disease (IPD) and multiple system atrophy-Parkinson type (MSA-P) is challenging since they share clinical features with parkinsonism and autonomic dysfunction. To distinguish MSA-P from IPD when the symptoms are relatively mild, we investigated the usefulness of the quantitative fractionalized autonomic indexes and evaluated the correlations of autonomic test indexes and functional status.@*Methods@#Thirty-six patients with parkinsonism (22 with IPD and 14 with MSA-P) in Soonchunhyang University Bucheon Hospital from February 2014 to June 2015 were prospectively enrolled in the study. We compared fractionalized autonomic indexes and composite autonomic scoring scale between patients with IPD and MSA-P with Hoehn and Yahr (H&Y) score ≤3. Parasympathetic indexes included expiratory/inspiratory ratio during deep breathing, Valsalva ratio (VR), and regression slope of systolic blood pressure (BP) in early phase II (vagal baroreflex sensitivity) during Valsalva maneuver. Sympathetic adrenergic indexes were pressure recovery time (PRT) and adrenergic baroreflex sensitivity (BRSa) (BP decrement associated with phase 3 divided by the PRT), sympathetic index 1, sympathetic index 3, early phase II mean BP drop, and pulse pressure reduction rate. Additionally, we compared the unified multiple system atrophy rating scale (UMSARS) and H&Y scores and the autonomic indexes in all patients.@*Results@#PRT was significantly different between the IPD and MSA-P groups (P = 0.004) despite the similar BP drop during tilt. Cutoff value of PRT was 5.5 s (sensitivity, 71.4%; specificity, 72.7%). VR (r = -0.455, P = 0.009) and BRSa (r = -0.356, P = 0.036) demonstrated a significant correlation with UMSARS and H&Y scores.@*Conclusions@#Among the cardiovascular autonomic indexes, PRT can be a useful parameter in differentiating the early stage of MSAP from that of IPD. Moreover, VR, and BRSa may be the optimal indexes in determining functional symptom severity.

12.
Chinese Medical Journal ; (24): 1919-1924, 2019.
Article in English | WPRIM | ID: wpr-774681

ABSTRACT

BACKGROUND@#Differential diagnosis of idiopathic Parkinson disease (IPD) and multiple system atrophy-Parkinson type (MSA-P) is challenging since they share clinical features with parkinsonism and autonomic dysfunction. To distinguish MSA-P from IPD when the symptoms are relatively mild, we investigated the usefulness of the quantitative fractionalized autonomic indexes and evaluated the correlations of autonomic test indexes and functional status.@*METHODS@#Thirty-six patients with parkinsonism (22 with IPD and 14 with MSA-P) in Soonchunhyang University Bucheon Hospital from February 2014 to June 2015 were prospectively enrolled in the study. We compared fractionalized autonomic indexes and composite autonomic scoring scale between patients with IPD and MSA-P with Hoehn and Yahr (H&Y) score ≤3. Parasympathetic indexes included expiratory/inspiratory ratio during deep breathing, Valsalva ratio (VR), and regression slope of systolic blood pressure (BP) in early phase II (vagal baroreflex sensitivity) during Valsalva maneuver. Sympathetic adrenergic indexes were pressure recovery time (PRT) and adrenergic baroreflex sensitivity (BRSa) (BP decrement associated with phase 3 divided by the PRT), sympathetic index 1, sympathetic index 3, early phase II mean BP drop, and pulse pressure reduction rate. Additionally, we compared the unified multiple system atrophy rating scale (UMSARS) and H&Y scores and the autonomic indexes in all patients.@*RESULTS@#PRT was significantly different between the IPD and MSA-P groups (P = 0.004) despite the similar BP drop during tilt. Cut-off value of PRT was 5.5 s (sensitivity, 71.4%; specificity, 72.7%). VR (r = -0.455, P = 0.009) and BRSa (r = -0.356, P = 0.036) demonstrated a significant correlation with UMSARS and H&Y scores.@*CONCLUSIONS@#Among the cardiovascular autonomic indexes, PRT can be a useful parameter in differentiating the early stage of MSA-P from that of IPD. Moreover, VR, and BRSa may be the optimal indexes in determining functional symptom severity.

13.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 424-434, 2019.
Article in English | WPRIM | ID: wpr-776868

ABSTRACT

To examine the effects of Populus tomentiglandulosa (PT) extract on the expressions of antioxidant enzymes and neurotrophic factors in the cornu ammonis 1 (CA1) region of the hippocampus at 5 min after inducing transient global cerebral ischemia (TGCI) in gerbils, TGCI was induced by occlusion of common carotid arteries for 5 min. Before ischemic surgery, 200 mg·kg PT extract was orally administrated once daily for 7 d. We performed neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B staining. Furthermore, we determined in situ production of superoxide anion radical, expression levels of SOD1 and SOD2 as antioxidant enzymes and brain-derived neurotrophic factor (BDNF) and insulin-like growth factor I (IGF-I) as neurotrophic factors. Pretreatment with 200 mg·kg PT extract prevented neuronal death (loss). Furthermore, pretreatment with 200 mg·kg PT extract significantly inhibited the production of superoxide anion radical, increased expressions of SODs and maintained expressions of BDNF and IGF-I. Such increased expressions of SODs were maintained in the neurons after IRI. In summary, pretreated PT extract can significantly increase levels of SODs and protect the neurons against TGCI, suggesting that PT can be a useful natural agent to protect against TGCI.


Subject(s)
Animals , Humans , Male , Brain-Derived Neurotrophic Factor , Genetics , Metabolism , CA1 Region, Hippocampal , Metabolism , Gerbillinae , Insulin-Like Growth Factor I , Genetics , Metabolism , Neuroprotective Agents , Plant Extracts , Populus , Chemistry , Pyramidal Cells , Metabolism , Reperfusion Injury , Drug Therapy , Genetics , Metabolism , Superoxide Dismutase , Genetics , Metabolism , Up-Regulation
14.
Laboratory Animal Research ; : 140-147, 2019.
Article in English | WPRIM | ID: wpr-786393

ABSTRACT

P53 and its family member p63 play important roles in cellular senescence and organismal aging. In this study, p53 and p63 immunoreactivity were examined in the hippocampus of young, adult and aged mice by using immunohistochemistry. In addition, neuronal distribution and degeneration was examined by NeuN immunohistochemistry and fluoro-Jade B fluorescence staining. Strong p53 immunoreactivity was mainly expressed in pyramidal and granule cells of the hippocampus in young mice. p53 immunoreactivity in the pyramidal and granule cells was significantly reduced in the adult mice. In the aged mice, p53 immunoreactivity in the pyramidal and granule cells was more significantly decreased. p63 immunoreactivity was strong in the pyramidal and granule cells in the young mice. p63 immunoreactivity in these cells was apparently and gradually decreased with age, showing that p63 immunoreactivity in the aged granule cells was hardly shown. However, numbers of pyramidal neurons and granule cells were not significantly decreased in the aged mice with normal aging. Taken together, this study indicates that there are no degenerative neurons in the hippocampus during normal aging, showing that p53 and p63 immunoreactivity in hippocampal neurons was progressively reduced during normal aging, which might be closely related to the normal aging processes.


Subject(s)
Adult , Animals , Humans , Mice , Aging , Cellular Senescence , Fluorescence , Hippocampus , Immunohistochemistry , Neurons , Pyramidal Cells
15.
Laboratory Animal Research ; : 78-85, 2019.
Article in English | WPRIM | ID: wpr-918395

ABSTRACT

Histone-binding protein RbAp48 has been known to be involved in histone acetylation, and epigenetic alterations of histone modifications are closely associated with the pathogenesis of ischemic reperfusion injury. In the current study, we investigated chronological change of RbAp48 expression in the hippocampus following 5 min of transient ischemia in gerbils. RbAp48 expression was examined 1, 2, 5, and 10 days after transient ischemia using immunohistochemistry. In sham operated gerbils, RbAp48 immunoreactivity was strong in pyramidal and non-pyramidal cells in the hippocampus. After transient ischemia, RbAp48 immunoreactivity was changed in the cornu ammonis 1 subfield (CA1), not in CA2/3. RbAp48 immunoreactivity in CA1 pyramidal neurons was gradually decreased and not detected at 5 and 10 days after ischemia. RbAp48 immunoreactivity in non-pyramidal cells was maintained until 2 days post-ischemia and significantly increased from 5 days post-ischemia. Double immunohistofluorescence staining revealed that RbAp48 immunoreactive non-pyramidal cells were astrocytes. At 5 days post-ischemia, death of pyramidal neurons occurred only in the CA1. These results showed that RbAp48 immunoreactivity was distinctively altered in pyramidal neurons and astrocytes in the hippocampal CA1 following 5 mins of transient ischemia. Ischemia-induced change in RbAp48 expression may be closely associated with neuronal death and astrocyte activation following 5 min of transient ischemia.

16.
Anatomy & Cell Biology ; : 128-135, 2018.
Article in English | WPRIM | ID: wpr-715223

ABSTRACT

Cardiac arrest (CA) is sudden loss of heart function and abrupt stop in effective blood flow to the body. The patients who initially achieve return of spontaneous circulation (RoSC) after CA have low survival rate. It has been known that multiorgan dysfunctions after RoSC are associated with high morbidity and mortality. Most previous studies have focused on the heart and brain in RoSC after CA. Therefore, the aim of this research was to perform serological, physiological, and histopathology study in the lung and to determine whether or how pulmonary dysfunction is associated with low survival rate after CA. Experimental animals were divided into sham-operated group (n=14 at each point in time), which was not subjected to CA operation, and CA-operated group (n=14 at each point in time), which was subjected to CA. The rats in each group were sacrificed at 6 hours, 12 hours, 24 hours, and 2 days, respectively, after RoSC. Then, pathological changes of the lungs were analyzed by hematoxylin and eosin staining, Western blot and immunohistochemistry for tumor necrosis factor α (TNF-α). The survival rate after CA was decreased with time past. We found that histopathological score and TNF-α immunoreactivity were significantly increased in the lung after CA. These results indicate that inflammation triggered by ischemia-reperfusion damage after CA leads to pulmonary injury/dysfunctions and contributes to low survival rate. In addition, the finding of increase in TNF-α via inflammation in the lung after CA would be able to utilize therapeutic or diagnostic measures in the future.


Subject(s)
Animals , Humans , Rats , Blotting, Western , Brain , Eosine Yellowish-(YS) , Heart , Heart Arrest , Hematoxylin , Immunohistochemistry , Inflammation , Lung , Models, Animal , Mortality , Survival Rate , Tumor Necrosis Factor-alpha
17.
Chinese Medical Journal ; (24): 689-695, 2018.
Article in English | WPRIM | ID: wpr-690555

ABSTRACT

<p><b>Background</b>Glehnia littoralis has been used for traditional Asian medicine, which has diverse therapeutic activities. However, studies regarding neurogenic effects of G. littoralis have not yet been considered. Therefore, in this study, we examined effects of G. littoralis extract on cell proliferation, neuroblast differentiation, and the maturation of newborn neurons in the hippocampus of adult mice.</p><p><b>Methods</b>A total of 39 male ICR mice (12 weeks old) were randomly assigned to vehicle-treated and 100 and 200 mg/kg G. littoralis extract-treated groups (n = 13 in each group). Vehicle and G. littoralis extract were orally administrated for 28 days. To examine neurogenic effects of G. littoralis extract, we performed immunohistochemistry for 5-bromo-2-deoxyuridine (BrdU, an indicator for cell proliferation) and doublecortin (DCX, an immature neuronal marker) and double immunofluorescence staining for BrdU and neuronal nuclear antigen (NeuN, a mature neuronal marker). In addition, we examined expressional changes of brain-derived neurotrophic factor (BDNF) and its major receptor tropomyosin-related kinase B (TrkB) using Western blotting analysis.</p><p><b>Results</b>Treatment with 200 mg/kg, not 100 mg/kg, significantly increased number of BrdU-immunoreactive () and DCX cells (48.0 ± 3.1 and 72.0 ± 3.8 cells/section, respectively) in the subgranular zone (SGZ) of the dentate gyrus (DG) and BrdU/NeuN cells (17.0 ± 1.5 cells/section) in the granule cell layer as well as in the SGZ. In addition, protein levels of BDNF and TrkB (about 232% and 244% of the vehicle-treated group, respectively) were significantly increased in the DG of the mice treated with 200 mg/kg of G. littoralis extract.</p><p><b>Conclusion</b>G. littoralis extract promots cell proliferation, neuroblast differentiation, and neuronal maturation in the hippocampal DG, and neurogenic effects might be closely related to increases of BDNF and TrkB proteins by G. littoralis extract treatment.</p>


Subject(s)
Animals , Male , Mice , Apiaceae , Chemistry , Blotting, Western , Brain-Derived Neurotrophic Factor , Metabolism , Cell Differentiation , Cell Proliferation , Dentate Gyrus , Cell Biology , Hippocampus , Cell Biology , Immunohistochemistry , Microtubule-Associated Proteins , Metabolism , Neurogenesis , Neuropeptides , Metabolism , Plant Extracts , Pharmacology , Receptor, trkB , Metabolism
18.
Journal of the Korean Balance Society ; : 1-7, 2018.
Article in Korean | WPRIM | ID: wpr-761264

ABSTRACT

The relationship between the vestibular system and the autonomic nervous system has been well studied in the context of the maintenance of homeostasis to the changing internal and external milieus. The perturbations of the autonomic indexes to the vestibular stimuli have been demonstrated in animal studies. In addition, the fluctuation of the blood pressure and the heart rate with other autonomic symptoms such as nausea, vomiting, and pallor are common manifestations in the wide range of vestibular disorders. At the same time, the disorders of the autonomic nervous system can cause dizziness and vertigo in some group of patients. In the anatomical point of view, the relationship between autonomic and vestibular systems is evident. The afferent signals from each system converge to the nucleus of solitary tract to be integrated in medullary reticular formation and the each pathway from the vestibular and autonomic nervous system is interconnected from medulla to cerebral cortex. In this paper, the reported evidence demonstrating the relationship between autonomic derangement and vestibular disorders is reviewed and the further clinical implications are discussed.


Subject(s)
Animals , Humans , Autonomic Nervous System , Autonomic Nervous System Diseases , Blood Pressure , Cerebral Cortex , Dizziness , Heart Rate , Homeostasis , Nausea , Pallor , Reticular Formation , Solitary Nucleus , Vertigo , Vomiting
19.
Chinese Medical Journal ; (24): 1796-1803, 2017.
Article in English | WPRIM | ID: wpr-338850

ABSTRACT

<p><b>BACKGROUND</b>Glehnia littoralis, as a traditional herbal medicine to heal various health ailments in East Asia, displays various therapeutic properties including antioxidant effects. However, neuroprotective effects of G. littoralis against cerebral ischemic insults have not yet been addressed. Therefore, in this study, we first examined its neuroprotective effects in the hippocampus using a gerbil model of transient global cerebral ischemia (TGCI).</p><p><b>METHODS</b>Gerbils were subjected to TGCI for 5 min. G. littoralis extract (GLE; 100 and 200 mg/kg) was administrated orally once daily for 7 days before ischemic surgery. Neuroprotection was examined by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. Gliosis was observed by immunohistochemistry for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1. For neuroprotective mechanisms, immunohistochemistry for superoxide dismutase (SOD) 1 and brain-derived neurotrophic factor (BDNF) was done.</p><p><b>RESULTS</b>Pretreatment with 200 mg/kg of GLE protected pyramidal neurons in the cornu ammonis 1 (CA1) area from ischemic insult area (F = 29.770, P < 0.05) and significantly inhibited activations of astrocytes (F = 22.959, P < 0.05) and microglia (F = 44.135, P < 0.05) in the ischemic CA1 area. In addition, pretreatment with GLE significantly increased expressions of SOD1 (F = 28.561, P < 0.05) and BDNF (F = 55.298, P < 0.05) in CA1 pyramidal neurons of the sham- and ischemia-operated groups.</p><p><b>CONCLUSIONS</b>Our findings indicate that pretreatment with GLE can protect neurons from ischemic insults, and we suggest that its neuroprotective mechanism may be closely associated with increases of SOD1 and BDNF expressions as well as attenuation of glial activation.</p>

20.
Journal of the Korean Balance Society ; : 135-141, 2017.
Article in Korean | WPRIM | ID: wpr-761253

ABSTRACT

OBJECTIVES: In vestibular neuritis (VN), the lesion preferentially affects the superior vestibular nerve because of the anatomic arrangement. It is well known that VN patients have a higher score of metabolic syndrome or a higher incidence of vertebral artery hypoplasia than controls. However, it is unclear whether the frequency of cardiovascular risk factors can affect the selective involvement of the branch of the vestibular nerve. Thus, we investigated the influence of cardiovascular risk factors on the development of total- or divisional VN. METHODS: 61 patients with VN were enrolled. Video head impulse tests and caloric tests were performed to determine which vestibular divisionswere affected. The patients were divided into divisional-VN (superior or inferior) and total-VN groups. Statistical analysis of the frequency of cardiovascular risk factors was performed only in superior and total VN groups because the number of inferior VN patients was too small to be statistically analyzed. RESULTS: Nineteen (31.1%) patients were classified as the total-VN group. In the divisional-VN group (42 patients, 65.6%), 40 were superior VN. The frequency of cardiovascular risk factors are not significantly different in superior VN and total-VN groups (All patients 50/61 [82.0%], superior-VN 36/40 [90.0%], total-VN 13/19 [68.4%]). The frequency of having more than one cardiovascular risk factor was slightly higher in the superior VN group, (13 [68.4%] vs. 36 [90.0%], p=0.062) but did not show any significant difference. CONCLUSIONS: The number of cardiovascular risk factors did not differ in superior VN patients compared to total VN patients.


Subject(s)
Humans , Caloric Tests , Cardiovascular Diseases , Head Impulse Test , Incidence , Risk Factors , Vertebral Artery , Vestibular Nerve , Vestibular Neuronitis
SELECTION OF CITATIONS
SEARCH DETAIL